Compact Ring-LWE Cryptoprocessor
نویسندگان
چکیده
In this paper we propose an efficient and compact processor for a ring-LWE based encryption scheme. We present three optimizations for the Number Theoretic Transform (NTT) used for polynomial multiplication: we avoid preprocessing in the negative wrapped convolution by merging it with the main algorithm, we reduce the fixed computation cost of the twiddle factors and propose an advanced memory access scheme. These optimization techniques reduce both the cycle and memory requirements. Finally, we also propose an optimization of the ring-LWE encryption system that reduces the number of NTT operations from five to four resulting in a 20% speed-up. We use these computational optimizations along with several architectural optimizations to design an instruction-set ring-LWE cryptoprocessor. For dimension 256, our processor performs encryption/decryption operations in 20/9 μs on a Virtex 6 FPGA and only requires 1349 LUTs, 860 FFs, 1 DSP-MULT and 2 BRAMs. Similarly for dimension 512, the processor takes 48/21 μs for performing encryption/decryption operations and only requires 1536 LUTs, 953 FFs, 1 DSP-MULT and 3 BRAMs. Our processors are therefore more than three times smaller than the current state of the art hardware implementations, whilst running somewhat faster.
منابع مشابه
Worst-case to average-case reductions for module lattices
Most lattice-based cryptographic schemes are built upon the assumed hardness of the Short Integer Solution (SIS) and Learning With Errors (LWE) problems. Their efficiencies can be drastically improved by switching the hardness assumptions to the more compact Ring-SIS and RingLWE problems. However, this change of hardness assumptions comes along with a possible security weakening: SIS and LWE ar...
متن کاملFrom Weakly Selective to Selective Security in Compact Functional Encryption
We provide a generic transformation from weakly selective secure FE to selective secure FE through an approach called hybrid functional key generation. Furthermore, our transformation preserves the compactness of the FE scheme. Additionally, we note that this transformation is much simpler than the prior work [GS16]. We consider the simplicity of the construction in this work as a positive feat...
متن کاملA New Ring-Based SPHF and PAKE Protocol On Ideal Lattices
emph{ Smooth Projective Hash Functions } ( SPHFs ) as a specific pattern of zero knowledge proof system are fundamental tools to build many efficient cryptographic schemes and protocols. As an application of SPHFs, emph { Password - Based Authenticated Key Exchange } ( PAKE ) protocol is well-studied area in the last few years. In 2009, Katz and Vaikuntanathan described the first lattice-based ...
متن کاملSecure Number Theoretic Transform and Speed Record for Ring-LWE Encryption on Embedded Processors
Compact implementations of the ring variant of the Learning with Errors (Ring-LWE) on the embedded processors have been actively studied due to potential quantum threats. Various Ring-LWE implementation works mainly focused on optimization techniques to reduce the execution timing and memory consumptions for high availability. For this reason, they failed to provide secure implementations again...
متن کاملA Family of Scalable Polynomial Multiplier Architectures for Ring-LWE Based Cryptosystems
Many lattice based cryptosystems are based on the Ring learning with errors (Ring-LWE) problem. The most critical and computationally intensive operation of these Ring-LWE based cryptosystems is polynomial multiplication over rings. In this paper, we exploit the number theoretic transform (NTT) to build a family of scalable polynomial multiplier architectures, which provide designers with a tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014